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1. Introduction

Chronoamperometry, where a current versus time
curve is measured after a step potential is applied to the
electrode, is one of the important techniques in electro-
analytical chemistry. The analysis of chronoamperome-
try at a shrouded circular disk electrode (see Fig. 1)
involves solving boundary value problems with
boundary and initial conditions that give rise to discon-
tinuities in concentration and flux distribution at the
disk/shroud boundary. Discontinuous integrals of Bessel
functions, which are solutions to the diffusion equa-
tions, have this property; some of them have been used
in heat conduction in cylindrical geometry [1]. They
have also been nicely applied in treating steady state
problems in electroanalytical chemistry [2,3]. However
applications of these integrals in transient processes,
such as chronoamperometry, at the shrouded disk elec-
trode become more difficult and may involve current
functions in the Laplace domain that can not be easily

inverted analytically [4,5]. We shall report in this paper
some of the mathematical results we obtained in apply-
ing a class of these discontinuous Bessel integrals to a
boundary value problem related to that of chronoamper-
ometry and compare our results with some of the results
in chronoamperometry.

2. Concentration Distribution

Consider a disk electrode with radiusa, and let the
origin of a cylindrical coordinate system be placed at
the center of the disk withz-axis perpendicular to the
disk. Also consider a reaction at the electrode,
Ox+ne→Red, and let the concentration of Ox,
C(r ,z, t ), be C0 throughout the solution initially. At
time t=0, let the potential be stepped to a large negative
value such that the concentration of Ox at the electrode
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Fig. 1. Shrouded electrode.

is zero. ThenC(r ,z, t ) satisfies the diffusion equation,

­C(r ,z, t )/­t=D [­2/­r 2+r21­/­r+­2/­z2]C(r ,z, t )

with the following initial and boundary conditions:

C(r ,z,0)=C0 at t=0

C(r ,0,t )=0 for 0<r<a, t>0

lim
r→`

C(r ,z, t )→C0

lim
z→`

C(r ,z, t )→C0

and D denotes the diffusion coefficient. For the com-
monly used shrouded electrode there is an additional
boundary condition that the flux into the shroud is zero.
The mixed boundary conditions of zero flux at the
shroud and zero concentration at the disk make a more
difficult mathematical problem. Various techniques
have been applied to this boundary value problem with
various degree of rigor [6–9]. We shall consider the lim-
iting case where the thickness of the shroud approaches
zero and ignore the zero flux condition for the moment.

Let us define the following dimensionless variables:
x=r /a, y=z/a, u=Dt /a2, andc(x,y,u)= C(r ,z, t )/C021;
then the above diffusion equation and the boundary con-
ditions become,

­c(x,y,u)/­u=(­2/­x2+x21­/­x+­2/­y2)c(x,y,u) (1)

c(x,y,0)=0 (2)

c(x,0,u)=21 for 0<x<1 (3)

lim
x→`

c(x,y,u)=lim
y→`

c(x,y,u)=0 (4)

Taking Laplace transforms of Eq. (1) with the initial
condition Eq. (2), we obtain,

(­2/­x2+x21­/­x+­2/­y22p)c(x,y,p)=0 (5)

wherep denotes the Laplace transform variable. Equa-
tion (5) is solved by the method of separation of vari-
ables by lettingc(x,y,p)=X(x,p)Y(y,p). Substituting
this into Eq. (5) the following two ordinary differential
equations are obtained

(d2/dx2+x21d/dx+j2)X(x,p)=0 (6)

(d2/dy22l2)Y(y,p)=0 (7)

wherej2 is the separation parameter andl2=j2+p. The
solutions to Eqs. (6) and (7), with the boundary condi-
tions of Eq. (4), are the Bessel functionsJ0(jx) and the
exponentials exp(2ly), for X(x,p) andY(y,p) respec-
tively; we denote the set of product solutions to Eq. (5)
by g(j )J0(jx)exp(2ly), and try to satisfy the discon-
tinuous boundary condition Eq. (3) by combinations of
product solutions with variousj . To satisfy Eq. (3), we
try to make use of some of the discontinuous integrals
of Bessel functions [10] such thateg(j )J0(jx)dj=21/p
for 0<x<1. One of the well known discontinuous Bessel
integral with g(j )=ksinj /j will give a constant for
0<x<1, but it does not give a value of 0 for allx>1 at
t=0, Eq. (2). We shall try a class of discontinuous Bessel
integrals of Weber with g(j )=kJm (j )/jm21, writ-
ing c(x,y,p) as an integral, i.e., c(x,y,p)=

kE
`

0

j12mJm (j )J0(jx)exp(2ly)dj . At y=0,

c(x,0,p)=kE
`

0

j12mJm (j )J0(jx)dj

=k((12x2)/2)m21/G (m ) for 0<x<1

=0 for 1<x<` (8)

For m=1 and k=21/p, the boundary condition at the
disk, Eq. (3), is satisfied and alsoc=0 for x>1. This is
the only member of this group of functions that satisfies
the condition thatc(x,0,t ) is uniformly equal to21 at
all x less than 1. However if instead we only require that
Eq. (3) be satisfied on the average, i.e.,

kc(x,0,u)l=e
1

0
c(x,0,u)xdx/e

1

0
xdx=21, then the other
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members of this group satisfy this condition with
k=22m21G (m+1)/p. We shall proceed with this and take
the inverse transform to obtain,

c(x,y,u)=L21(22m21G (m+1)/p)

E
`

0

j12mJm (j )J0(jx)exp[2y(p+j2)1/2dj

=2
G (m+1)

222m E
`

0

Jm (j )J0(jx)
jm21 .

[eyjerfc(y/2Ïu+Ïuj )

+e2yjerfc(y/2Ïu2Ïuj )]dj (9)

3. Flux Distribution

The flux aty=0 is given by

S­c
­yDy=0=

G (m+1)
212m HE

`

0

Jm (j )J0(jx)erf(jÏu)
jm22 dj

+
1

Ïpu
E
`

0

Jm (j )J0(jx)e2uj2

jm21 djJ. (10)

For ease of calculations, the first integral is written as

E
`

0

Jm (j )J0(jx)erf(Ïuj )
jm22 dj=E

`

0

Jm (j )J0(jx)
jm22 dj

2E
`

0

Jm (j )J0(jx)erfc(Ïuj )
jm22 dj

=
222mG (3/2)
G (3/22m )

F (3/2,3/22m ;1;x2)

2E
`

0

Jm (j )J0(jx)erfc(Ïuj )
jm22 dj x<1

=2
22m

x3G (m+1)
F (3/2,3/2;m+1;x22)

2E
`

0

Jm (j )J0(jx)erfc(Ïuj )
jm22 dj x>1 (11)

for m>1, whereF (a,b;c;z) denotes the Gauss hyperge-
ometric series [11]. Figure 2 illustrates (­c/­y) at y=0
as functions ofx andu, for m=2 and 3. Forx>1, (­c/
­y)y=0 is nearly zero, this is particularly true for smallu

and forx away from the neighborhood ofx=1. And asu
approaches 0, the first integral in Eq. (10) approaches 0

and the second integral tends toe
`

0
j12mJm (j )J0(jx)dj

[12] which is identically 0 forx>1, Eq. (8); and the sec-
ond term in Eq. (10) numerically becomes almost 0 for
x>1 asu→0. Thus the concentration distribution given
by Eq. (9) approximately satisfies the condition of zero
flux at x>1, i.e., at the shroud. There is a singularity in
(­c/­y)y=0 at the pointx=1 for the case ofm=2, because
F (a,b,c;1) is divergent form<2; nevertheless, the cur-
rent, which is the integral of the flux over the disk area,
is regular form=2.

4. Current as Function of Time

The current is given byi (t )=nFDe(­C/­z)z=02pr dr ,
integrating over the disk, whereF denotes the Faraday
constant. Defining a dimensionless current function
f (u)=i (t )/2pnFDC0a we get

f (u)=E
1

0

(­c/­y)y=0xdx

=E
1

0

G (m+1)
212m FE

`

0

Jm (j )J0(jx)erf(jÏu)
jm22 dj

+
1

Ïpu
E
`

0

Jm (j )J0(jx)e2uj2

jm21 djGxdx

=
G (m+1)

212m FE
`

0

Jm (j )J1(j )erf(jÏu)
jm21 dj

+
1

Ïpu
E
`

0

Jm (j )J1(j )e2uj2

jm djG (12)

Whenu→0, i.e., whent<<a2/D , the second term on the
right hand side of Eq. (12) dominates and

lim
u→0

Ïuf (u)=
G (m+1)

212mÏp
E
`

0

Jm (j )J1(j )
jm dj=

1

2Ïp

or, in terms of the physical variables,

lim i (t )=
nFC0ÏpDa2

ÏtDt
a2→0

which is the Cottrell equation.
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Fig. 2. Fluxes as functions of radial distance and time. From top to bottom:Ïu=0.05, 0.1, 0.5, 1.0.

Series expansion for large u:The last integral in Eq.
(12) can be evaluated for largeu from the following re-
lation [13],

w2(u)=E
`

0

Jm (j )J1(j )e2uj2

jm dj

=222mO`
m=0

G (m+2m+2)(24u)2(m+1)

G (m+m+2)G (m+m+1)G (m+2)

and the first integral on the right hand side of Eq. (12)
from

w1(u)=E
`

0

Jm (j )J1(j )erf(jÏu)
jm21 dj

=
22mG (m21)

G (m+1/2)G (m21/2)
2

1

Ïp
E
u

`

1

Ïa
(dw2(a )/da )da .

Then the current, Eq. (12), is evaluated by

f (u)=
G (m+1)

2 F G (m21)

G (m+
1
2
)G (m2

1
2
)

2
1

Ïpu
O`
m=1

G (m+2m)(24u)2m

(2m+1)G (m+m+1)G (m+m)m!G
which is good for large value ofu, i.e., for long time.

Asymptotic expansion at short time:We now seek an
asymptotic expansion at smallu for f (u). Let us change
the integration variable inw2(u), the last integral in Eq.
(12), fromj to t=j2,

w2(u)=1/2E
`

0

Jm (Ït )J1(Ït )
t (m+1)/2 e2utdt .

Thusw2(u) may be regarded as the Laplace transform
of the function

f (t )=
1

2t (m+1)/2 Jm (Ït )J0(Ït ).

The Mellin transform off (t ) is [14],

F (z)=E
`

0

t z21f (t )dt

=
(1/2)22z+m+2G (m22z+2)G (z)

G (m2z+1)G (m2z+2)G (22z)

which is absolutely convergent for 0<Re z< (m+3)/2. We
therefore apply the results of Handelsman and Lew for
the asymptotic expansion of Laplace transform near the
origin [15,16] to obtain

w2(u)=(Lf )(u)=(2pi )21 E
c+i`

c2i`

F (z)G (12z)uz21dz

0<c<1

=
22m

G (m+1)
+O

m=0

(22)mG (
m+m+2

2
)u(m+m21)/2

m!G (
m2m+2

2
)G (

m2m
2

)(m+m)

and the first integral,w1(u), is derived from

w1(u)=2
1

Ïp
E
u

0

1

Ïa
(dw2(a )/da )da .

64



Volume 100, Number 1, January–February 1995

Journal of Research of the National Institute of Standards and Technology

Therefore, at smallu the current, Eq. (12), is given by,

f (u)=
1

2Ïp
F 1

Ïu
22mG (m+1)

O
m=0

(22)mG (
m+m+2

2
)u(m+m21)/2

m!G (
m2m+2

2
)G (

m2m
2

)(m+m+1)(m+m)
G.

Severalf (u) versus 1/Ïu plots are shown in Fig. 3,
including the Cottrell equation for the one dimensional
diffusion, which is the straight line through the origin.
The intercepts of the curves at the vertical axis show the
steady state current,f (u→`), for m=2 and 3, and they
have the values 0.848 and 0.678, respectively; while
from numerical simulation of the chronoamperometry
at inlaid disk electrode [17,9],f (u→`)=0.637 which

corresponds to a steady state current of
i (t→`)=4nFDC0a. As m increases f (u→`)=
G (m+1)G (m21)/2G (m+1

2)G (m21
2) decreases monotoni-

cally to 0, i.e.,f (u) approaches Cottrell behavior asm
becomes large. In Fig. 4,Ïuf (u) for m=2 and 3 are
plotted versusÏu to magnify results at smallu. The
results from numerical simulations for shrouded disk
electrode are also included, curve b. Discontinue Bessel
integral was used differently in chronoamperometry by
Fleischman and Pons [5], their result is also shown in
Fig. 4, curve c.
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Fig. 4. Ïuf (u) as functions ofÏu. (a) m=2, (b) digital simulation,
(c) Ref. [2], (d) m=3. Horizontal line is Cottrell one dimensional

diffu-
sion.

Fig. 3. f (u) as functions of 1/Ïu.
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